skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Lohse, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lohse, K (Ed.)
    Abstract Recombination is central to genetics and to evolution of sexually reproducing organisms. However, obtaining accurate estimates of recombination rates, and of how they vary along chromosomes, continues to be challenging. To advance our ability to estimate recombination rates, we present Hi-reComb, a new method and software for estimation of recombination maps from bulk gamete chromosome conformation capture sequencing (Hi-C). Simulations show that Hi-reComb produces robust, accurate recombination landscapes. With empirical data from sperm of five fish species we show the advantages of this approach, including joint assessment of recombination maps and large structural variants, map comparisons using bootstrap, and workflows with trio phasing vs. Hi-C phasing. With off-the-shelf library construction and a straightforward rapid workflow, our approach will facilitate routine recombination landscape estimation for a broad range of studies and model organisms in genetics and evolutionary biology. Hi-reComb is open-source and freely available at https://github.com/millanek/Hi-reComb. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026